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Abstract We address the following inverse problem in quantum statistical physics: does
the quantum free energy (von Neumann entropy + kinetic energy) admit a unique mini-
mizer among the density operators having a given local density n(x)? We give a positive
answer to that question, in dimension one. This enables to define rigourously the notion of
local quantum equilibrium, or quantum Maxwellian, which is at the basis of recently derived
quantum hydrodynamic models and quantum drift-diffusion models. We also characterize
this unique minimizer, which takes the form of a global thermodynamic equilibrium (canon-
ical ensemble) with a quantum chemical potential.

Keywords Quantum hydrodynamic models · Inverse problem · Density matrix · Entropy
minimization under constraint · Quantum statistical physics · Moment realizability

1 Introduction

We deal with a question which is at the core of recently derived quantum hydrodynamic
models based on an entropy minimization principle [7, 8]. Let a given density of particles
n(x) ≥ 0, can we find a minimizer of the quantum free energy among the density operators
� having n(x) as local density, i.e. satisfying the constraint ρ(x, x) = n(x), where ρ(x, y)

denotes the integral kernel of �?
This question arises in the moment closure strategy initially introduced by Degond and

Ringhofer in [7] in order to derive quantum hydrodynamic models from first principles.
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Let us briefly review this theory (for more details, one can refer to the reviews [9, 13]).
The quest of macroscopic quantum models is motivated by applications such as nanoelec-
tronics, where affordable numerical simulations of the electronic transport are necessary
while the miniaturization of devices now imposes to take into account quantum mechani-
cal effects in the models, resulting in a higher simulation cost. At the microscopic level of
description, the Schrödinger equation and the quantum Liouville equation are numerically
too expensive, which motivates the derivation of models at a more macroscopic level. In the
classical setting, the relationships between microscopic (kinetic) and macroscopic (fluid)
levels of description are fairly well understood by means of asymptotic analysis, see for in-
stance [17, 18, 28]. In particular, it is known that the understanding of the structure of the
fluid model relies on the properties of the collision operator at the underlying kinetic level.
Indeed, collisions are the source of entropy dissipation, which induces the relaxation of the
system towards local thermodynamical equilibria. The free parameters of these local equilib-
ria are the moments of the system (e.g. local density, momentum and energy) and are driven
by the fluid equations. Arguing that the derivation of precise quantum collision operators
is a very difficult task, while only the macroscopic properties of such operators is needed
in our context, Degond and Ringhofer have grounded their theory on a notion of quantum
local equilibria. To do so, they have generalized Levermore’s moment approach [26] to the
quantum setting. The idea consists in closing the system of moment equations by defining a
local equilibrium as the minimizer of an entropy functional (say, the von Neumann entropy)
under moment constraints.

In [8], this approach was adapted so as to describe systems in strong interaction with
their surrounding media and obtain quantum macroscopic models by applying a diffusive
asymptotics. The most simple of these models, the quantum drift-diffusion model, was stud-
ied numerically in [10, 16] and the simulation results for one-dimensional devices such as
resonant tunneling diodes were encouraging. This model is based on the most elementary
constrained entropy minimization problem. Indeed, in this case, the local quantum equilib-
rium at a given temperature, also called quantum Maxwellian, is defined as the minimizer
of the quantum free energy subject to a local constraint of prescribed density. Note that not
only the total number of particles is fixed, as in the usual quantum statistics theory (for the
so-called canonical ensemble), but also the local density n(x) is imposed at any point x of
the physical space. This problem has been studied formally in [8] and the Lagrange multipli-
ers theory lead to the existence of a quantum chemical potential A(x) such that the solution
of the minimization problem is a density operator of the form

� = exp

(
−−� + A(x)

T

)
. (1.1)

Remark that the difficulty in this problem lies in the fact that its solution will depend on its
data in a global way. The similar problem in classical physics, i.e. reconstructing f (x, v) =
exp(−(

|v|2
2 + A(x))) from its density n(x) = ∫

f (x, v)dv, is very simple and the chemical
potential, given by A(x) = − logn(x) + 3

2 log(2π), depends on n(x) in a local way. Here,
due to the operator formalism of quantum mechanics, which is not commutative, the density
and the associated chemical potential are linked together by a non-explicit formula, and in a
global manner.

To end this short presentation, let us also recall that this quantum drift-diffusion model
displays formally several interesting properties: it dissipates a quantum fluid entropy, which
indicates that it should be mathematically well-posed, and it can be related to other known
models after some approximations (for instance, semiclassical expansions on the quantum
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drift-diffusion system enable to derive the density-gradient model). Besides, a whole family
of quantum fluid models were derived by several authors, based on the same entropy mini-
mization principle: quantum Spherical Harmonic Expansion (QSHE) models [4], quantum
isothermal Euler systems [11, 21], quantum hydrodynamics [12, 22], models with viscos-
ity [6, 20], quantum models for systems such as subbands [31] or spins [3]. Nevertheless,
one has to put the emphasis on the fact that all these studies remain yet at a formal level.
Even the notion of local quantum equilibrium has only been defined formally and this prob-
lem of entropy minimization under local constraints is widely open.

The aim of this paper is to make a first step towards the rigorous justification of these
models, by studying the quantum entropy minimization principle in the most simple situ-
ation, in the case of a density constraint. We work in dimension one, in a finite box with
periodic boundary conditions. Our main result, Theorem 2.1, is presented after a few nota-
tions in the next section. We show that, in an appropriate functional framework, the quan-
tum Maxwellian is properly defined, i.e. that to any density n(x) > 0 corresponds a unique
density matrix � minimizing the free energy. Moreover, we prove that � actually takes the
form (1.1), where A(x) is the quantum chemical potential (in the sequel of the paper, the
temperature T will be set to 1).

Let us now make a remark. One can see on the formula (1.1) that the quantum
Maxwellian reads as the global equilibrium canonical ensemble associated to the Hamil-
tonian −�+A(x), where the chemical potential A(x) is seen as an applied potential. Hence,
our problem can be reformulated as the following inverse problem in quantum statistical
mechanics. Let a system at thermal equilibrium with a surrounding media at a given temper-
ature, in a certain potential. Can we reconstruct the potential from the measurement of the
density at any point? This problem has been much less studied than more standard inverse
problems such as the inverse scattering theory (reconstructing the potential from its scatter-
ing effects) or the inverse spectral problem (reconstructing the potential from the spectrum
of the associated Hamiltonian). Nevertheless, one can quote at least two references where
similar inverse problems have been investigated. In [25] (see also the series of ref. 5 therein),
a practical method for reconstructing potentials from measurements was settled using Feyn-
man path integrals and, in [19], a close problem for quantum spin systems was studied.

The outline of this paper is as follows. In Sect. 2, we define the functional framework of
the paper and state our main theorem. In Sect. 3, we study the entropy and the free energy
and give some useful results for the sequel. In Sect. 4, we prove the existence and uniqueness
of the minimizer �[n] associated to a density n. Section 5 is devoted to the characterization
of �[n] via the Euler-Lagrange equation for the minimization problem. To deal with the
constraint, we introduce a penalized problem.

Future developments of this work will involve several directions. A first extension will
concern the investigation of other spatial configurations: other boundary conditions, whole-
space case, or space dimension greater than one. We will also investigate the entropy min-
imization problem with constraints of higher order moments. As in the case of classical
physics, it might lead to ill-posed problems and to delicate problems of moment realizabil-
ity [23]. Another interesting question which remains to be solved concerns the quantum evo-
lution: can we define an evolution for a quantum Liouville equation with a BGK-relaxation
operator based on the local equilibria defined in this paper, as for instance in [1] for other
relaxation operators? This issue is linked to the possibility of rigourously deriving the quan-
tum drift-diffusion model.
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2 Notations and Main Result

Let us describe the functional framework of this paper. The physical space that we consider
is monodimensional and bounded. The particles are supposed to be confined in the torus
[0,1], i.e. with periodic boundary conditions. We consider the Hamiltonian

H = − d2

dx2

on the space L2(0,1) of complex-valued functions, equipped with the domain

D(H) =
{
u ∈ H2(0,1) : u(0) = u(1),

du

dx
(0) = du

dx
(1)

}
.

The domain of the associated quadratic form is

H1
per = {

u ∈ H1(0,1) : u(0) = u(1)
}
.

Its dual space will be denoted H−1
per . Remark that one has the following identification:

∀u,v ∈ H1
per, (

√
Hu,

√
Hv) =

(
du

dx
,
dv

dx

)
, ‖√Hu‖L2 =

∥∥∥∥du

dx

∥∥∥∥
L2

. (2.1)

We shall denote by J1 the space of trace class operators on L2(0,1) [29, 32] and by J2

the space of Hilbert-Schmidt operators on L2(0,1), which are both ideals of the space
L(L2(0,1)) of bounded operators on L2(0,1). We denote by K the space of compact oper-
ators on L2(0,1).

A density operator is defined as a nonnegative trace class self-adjoint operator on
L2(0,1). Let us define the following space:

E =
{
� ∈ J1, � = �∗ and

√
H |�|√H ∈ J1

}
.

This is a Banach space endowed with the norm

‖�‖E = Tr |�| + Tr(
√

H |�|√H).

For any � ∈ E , the associated density n[�] is formally defined by

n[�](x) = ρ(x, x),

where ρ is the integral kernel of � satisfying

∀φ ∈ L2(0,1), �(φ)(x) =
∫ 1

0
ρ(x, y)φ(y)dy.

The density n[�] can be in fact identified by the following weak formulation:

∀� ∈ L∞(0,1), Tr(��) =
∫ 1

0
�(x)n[�](x)dx, (2.2)
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where, in the left-hand side, � denotes the multiplication operator by �, which belongs to
L(L2(0,1)). If the spectral decomposition of � is written

� =
∞∑

k=1

ρk (φk, ·)L2 φk

then we have

Tr
√

H |�|√H = ‖√H
√|�|‖2

J2
=

∞∑
k=1

|ρk|
∥∥∥∥dφk

dx

∥∥∥∥
2

L2
, (2.3)

n[�](x) =
∞∑

k=1

ρk|φk(x)|2, ‖n[�]‖L1 ≤
∞∑

k=1

|ρk| = Tr |�|. (2.4)

Moreover, by the Cauchy-Schwarz inequality, n[�] belongs to W 1,1(0,1) with periodic
boundary conditions, and we have

∥∥∥∥dn[�]
dx

∥∥∥∥
L1

≤ 2‖�‖1/2
J1

(
Tr

√
H |�|√H

)1/2 ≤ C‖�‖E .

The energy space will be the following closed convex subspace of E :

E+ = {� ∈ E : � ≥ 0}.

On E+ we define the following free energy:

F(�) = Tr(� log(�) − �) + Tr(
√

H�
√

H). (2.5)

We will see in Sect. 3 that F is well-defined and continuous on E+. If � ∈ E+, then the
Cauchy-Schwarz inequality applied to (2.4) gives

∣∣∣∣ d

dx

√
n[�]

∣∣∣∣ ≤
( ∞∑

k=1

ρk

∣∣∣∣dφk

dx

∣∣∣∣
2
)1/2

.

Hence we have
√

n[�] ∈ H1
per and, using (2.3), we get

∥∥∥∥ d

dx

√
n[�]

∥∥∥∥
L2

≤
(

Tr
√

H�
√

H
)1/2

. (2.6)

Recall also the following logarithmic Sobolev inequality for systems, proved in [14] and
adapted to bounded domains in [15]: for all � ∈ E+ we have

Tr� log� + Tr(
√

H�
√

H) ≥
∫ 1

0
n[�] logn[�]dx + log(4π)

2
Tr�. (2.7)

This inequality, coupled to (2.6) which gives n[�] logn[�] ∈ L1(0,1), implies that Tr� log�

is bounded for all � ∈ E+.
Our main result is stated in the following theorem.
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Theorem 2.1 Consider a density n ∈ H1
per such that n > 0 on [0,1]. Then the following

minimization problem with constraint:

minF(�) for � ∈ E+ such that n[�] = n, (2.8)

where F is defined by (2.5), is attained for a unique density operator �[n], which has the
following characterization. We have

�[n] = exp(−(H + A)), (2.9)

where A belongs to the dual space H−1
per of H1

per and the operator H +A is taken in the sense
of the associated quadratic form

QA(ϕ,ϕ) =
∥∥∥∥dϕ

dx

∥∥∥∥
2

L2
+ (A, |ϕ|2)H−1

per,H1
per

. (2.10)

From (2.9), it is possible to obtain a formula for A. Such formula is given in (5.50). The
following remark shows that the functional space H−1

per for the quantum chemical potential
A(x) is optimal.

Remark 2.2 For a given A ∈ H−1
per , we prove further—see Sect. 5.2, Step 4 of the proof—that

the operator H + A(x) (in the sense of quadratic forms) is self-adjoint and has a compact
resolvent. Moreover, the associated quadratic form is a form-bounded perturbation of u 
→
‖u′‖2

L2 , so that H + A(x) can be diagonalized on L2 and its k-th eigenvalue ρk has an
asymptotic behaviour of the form Ck2. Therefore, the H1 norm of the associated eigenvector
φk is bounded by Ck. Consider now the operator � = exp(−(H + A)) and the associated
density n(x). By using the decay of the exponential, one can see that the series in (2.4) is
converging in H1. If we assume that A belongs to the Sobolev space Hs , where −1 < s <

0, then by elliptic regularity one has φk ∈ Hs+2, and the series (2.4) will converge in this
Sobolev space, so we deduce that n ∈ Hs+2. Hence, if n belongs to H1 but does not belong
to any Hs , s > 1, then we have A ∈ H−1

per and A cannot be more regular.

Remark 2.3 The two main limitations of this theorem, the strict positivity of n and the one-
dimensional setting, are not essential for the first part of the theorem, the existence and
uniqueness of the minimizer. This first result will be extended in a forthcoming work. How-
ever, these assumptions are essential in our proof of the second part of the theorem, the
characterization of the minimizer. Indeed, the strict positivity of n is crucial in Sect. 5.2,
Step 3, see e.g. (2.9) and the argument after (5.51). Moreover, the one-dimensional frame-
work implies by Sobolev embeddings that H1

per is a Banach algebra, which enables to define
the above quadratic form QA in (2.10).

Outline of the proof of Theorem 2.1. The existence of the minimizer �[n] of the constrained
problem (2.8) is obtained by proving that minimizing sequences are compact and that the
functional is lower semicontinuous. Compactness stems from uniform estimates that enable
to apply Lemma 3.1, whereas the lower semicontinuity comes from (3.2) in Lemma 3.1 and
from Lemma 3.3. The uniqueness of the minimizer is a consequence of the strict convexity
of the entropy (proved in Lemma 3.3).

In order to characterize the minimizer �[n] of (2.8), we need to write the Euler-Lagrange
equation for this minimization problem. This task is difficult because the constraint n[�] = n
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is not easy to handle when perturbing a density operator. We circumvent this difficulty by
defining a new minimization problem with penalization, whose minimizer �ε will converge
to �[n]. Next, the Euler-Lagrange equation for the penalized problem reads

√
�ε(log(�ε) + H + Aε)

√
�ε.

From this equation, in order to prove that

�ε = exp(−(H + Aε)),

we show two important intermediate results, relying on the fact that �ε is a minimizer and
on properties of the von Neumann entropy Tr(� log� − �). First, we prove that the kernel
of �ε is reduced to {0}. Second, we prove that the family (φε

p) of eigenfunctions of �ε ,
which is a Hilbert basis of L2(0,1), is in fact dense in H1

per . This enables to prove that
(φε

p) is the complete family of eigenfunctions of H + Aε , and to identify the associated
eigenvalues. Finally, using the two assumptions discussed in Remark 2.3, we are able to
prove that Aε converges in the H−1

per strong topology, which is sufficient to pass to the limit
as the penalization parameter ε goes to zero, and conclude the proof.

3 Basic Properties of the Energy Space and the Entropy

In this section, we prove a few basic results on the energy space E+ that will be used in the
paper.

Lemma 3.1 Let (�k)k∈N be a bounded sequence of E+. Then, up to an extraction of a sub-
sequence, there exists � ∈ E+ such that

�k → � in J1 and
√

�k → √
� in J2 as k → +∞ (3.1)

and

Tr(
√

H�
√

H) ≤ lim inf
k→+∞

Tr(
√

H�k

√
H). (3.2)

Furthermore, if one has

Tr(
√

H�
√

H) = lim
k→+∞

Tr(
√

H�k

√
H)

then one can conclude in addition that

√
H

√
�k → √

H
√

�k in J2 as k → +∞. (3.3)

Proof Step 1: weak-∗ convergence in J1. First notice that the boundedness of �k in E+
implies by (2.3) that the operator

√
H

√
�k is bounded in the Hilbert space J2. Moreover,

since �k and
√

H�k

√
H are positive and bounded in J1, we can extract subsequences such

that �k and
√

H�k

√
H converge in the J1 weak-∗ topology, that is, there exists two positive

trace class operators �, A such that, for all compact operator K ∈ K,

Tr(K�k) → Tr(K�); Tr(K
√

H�k

√
H) → Tr(KA).
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By application of Proposition 3.12 of [5], we have

‖A‖J1 ≤ lim inf‖√H�k

√
H‖J1 = lim inf Tr(

√
H�k

√
H). (3.4)

Step 2: Identification of A. We show that A = √
H�

√
H . Indeed, let K = (

√
H +

I )−1K ′(
√

H + I )−1 with K ′ compact. Using the cyclicity of trace with the bounded op-
erators

√
�k

√
H and

√
H

√
�k , we get

Tr(K
√

H�k

√
H) = Tr(

√
�k

√
HK

√
H

√
�k),

= Tr(
√

�k

√
H(

√
H + I )−1K ′(

√
H + I )−1

√
H

√
�k)

= Tr(
√

�kK
′√�k) − Tr(

√
�kK

′(
√

H + I )−1√�k)

− Tr(
√

�k(
√

H + I )−1K ′√�k)

+ Tr(
√

�k(
√

H + I )−1K ′(
√

H + I )−1√�k)

= Tr(K ′�k) − Tr(K ′(
√

H + I )−1�k) − Tr((
√

H + I )−1K ′�k)

+ Tr((
√

H + I )−1K ′(
√

H + I )−1�k).

Since �k → � in the J1 weak-∗ topology, and since (
√

H + I )−1K ′(
√

H + I )−1, K ′(
√

H +
I )−1, (

√
H + I )−1K ′ are compact operators, we have

Tr(K
√

H�k

√
H) → Tr(K ′�) − Tr(K ′(

√
H + I )−1�) − Tr((

√
H + I )−1K ′�)

+ Tr((
√

H + I )−1K ′(
√

H + I )−1�)

= Tr(K ′(
√

H + I )−1A(
√

H + I )−1).

We thus obtain

(
√

H + I )−1A(
√

H + I )−1 = � − (
√

H + I )−1� − �(
√

H + I )−1

+ (
√

H + I )−1�(
√

H + I )−1

and it follows that A = √
Hρ

√
H . In particular, (3.4) yields (3.2).

Step 3: weak convergence in J1. Let us prove now that �k converges weakly in J1, that is,
for all bounded operator σ ∈ L(L2(0,1)),

Tr(σ�k) → Tr(σ�).

We have

Tr(σ�k) = Tr(
√

�kσ
√

�k)

= Tr(
√

�k(
√

H + I )(
√

H + I )−1σ(
√

H + I )−1(
√

H + I )
√

�k)

= Tr((
√

H + I )−1σ(
√

H + I )−1(
√

H + I )�k(
√

H + I ))

= Tr((
√

H + I )−1σ(
√

H + I )−1
√

H�k

√
H) + Tr((

√
H + I )−1σ�k)

+ Tr(σ (
√

H + I )−1�k) − Tr((
√

H + I )−1σ(
√

H + I )−1�k).
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Since (
√

H + I )−1σ(
√

H + I )−1, (
√

H + I )−1σ and σ(
√

H + I )−1 are compact, since
�k → � and

√
H�k

√
H → √

H�
√

H in J1 weakly-∗, we can pass to the limit in the latter
expression and obtain the weak convergence of �k .

Step 4: strong convergence in J1. To obtain the strong convergence in J1, it suffices now to
apply a result of [32] that we recall here (specified to the case of J1).

Theorem 3.2 (Theorem 2.21 and addendum H of [32]) Suppose that Ak → A weakly in the
sense of operators and that ‖Ak‖J1 → ‖A‖J1 . Then ‖Ak − A‖J1 → 0.

One can indeed apply this result since �k converges weakly in J1 to � (which implies the
weak operator convergence), with convergence of the respective norms:

‖�k‖J1 = Tr�k → Tr� = ‖�‖J1 .

This implies that the convergence of �k in J1 is strong and the first part of the lemma is
proved.

Step 5: strong convergence of
√

�k in J2. We have

‖�k − �‖L(L2) ≤ ‖�k − �‖J1 .

Moreover, it is known that the norm convergence of �k ≥ 0 to � ≥ 0 implies the norm
convergence of

√
�k to

√
� (see e.g. [29]). We claim that in fact we have

√
�k → √

� in J2. (3.5)

To prove this fact, since J2 is a Hilbert space and since

‖√�k‖2
J2

= Tr�k → Tr� = ‖�‖2
J2

,

it suffices to prove that
√

�k ⇀
√

� in J2 weak. Let σ ∈ J2. One can choose a regularizing
sequence σk with finite rank such that

σk → σ in J2 as n → +∞. (3.6)

For all n,m ∈ N, we have

|Tr(
√

�k − √
�)σ | ≤ |Tr(

√
�k − √

�)σm| + |Tr(
√

�k − √
�)(σ − σm)|

≤ ‖√�k − √
�‖L(L2)‖σm‖J1 + (‖√�k‖J2 + ‖√�‖J2)‖σm − σ‖J2

≤ ‖√�k − √
�‖L(L2)‖σm‖J1 + C‖σm − σ‖J2 ,

which implies by (3.6) that Tr(
√

�k −√
�)σ → 0 as n → +∞. This means that

√
�k ⇀

√
�

in J2 weak, which finally implies (3.5).

Step 6: strong convergence of
√

H
√

�k in J2. From now on, we assume that one has in
addition the following convergence:

‖√H
√

�k‖2
J2

= Tr(
√

H�k

√
H) → Tr(

√
H�

√
H) = ‖√H

√
�‖2

J2
.

Consequently, if we prove that
√

H
√

�k ⇀
√

H
√

� in J2 weak,

this weak convergence in the Hilbert space J2 will be in fact a strong convergence.
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To this aim, we consider σ ∈ J2 and, for all ε ∈ (0,1), we decompose

Tr(σ
√

H
√

�k) = Tr(σ (1 + ε
√

H)−1
√

H
√

�k) + Tr(σ (1 − (1 + ε
√

H)−1)
√

H
√

�k)

= Tr(σ
√

H
√

�) + Tr(σε

√
H(

√
�k − √

�))

+ Tr((σε − σ)
√

H
√

�) + Tr((σ − σε)
√

H
√

�k)

with σε = σ(1 + ε
√

H)−1. For all ε > 0, the operator (1 + ε
√

H)−1
√

H is bounded on
L2(0,1), so σε

√
H belongs to J2 and the previous step implies that

lim
k→+∞

Tr(σε

√
H(

√
�k − √

�)) = 0.

Now we write
∣∣Tr((σε − σ)

√
H

√
�) + Tr((σ − σε)

√
H

√
�k)

∣∣
≤ ‖σ − σε‖J2

(‖√H
√

�k‖J2 + ‖√H
√

�‖J2

)
≤ C‖σ − σε‖J2 .

Therefore, if we prove that σε converges to σ in J2 as ε → 0, we will have

Tr(σ
√

H
√

�k) → Tr(σ
√

H
√

�) as k → +∞
and the proof of the lemma will be complete.

Introduce the eigenfunctions and eigenvalues (ep,μp)p∈N∗ of the operator H , which has
a compact resolvent. We have

‖σε‖2
J2

=
∞∑

p=1

‖σεep‖2
L2 =

∞∑
p=1

1

(1 + ε
√

μp)2
‖σep‖2

L2

which converges to ‖σ‖2
J2

as ε → 0 by comparison theorem. Similarly, for all ϕ ∈ L2(0,1),

we deduce from the convergence in L2 of the series
∑

p ϕpep , where ϕp = ∫ 1
0 ϕ(x)ep(x)dx,

that

(1 + ε
√

H)−1ϕ =
∞∑

p=1

1

1 + ε
√

μp

ϕpep → ϕ in L2(0,1) as ε → 0.

Therefore, σε and σ ∗
ε = (1 + ε

√
H)−1σ converge strongly to σ as ε → 0 and one can apply

Grümm’s convergence theorem (see [32], Theorem 2.19), which proves the convergence of
σε to σ in J2. The proof of Lemma 3.1 is complete. �

Lemma 3.3 The application � 
→ Tr(� log� − �) possesses the following properties.

(i) There exists a constant C > 0 such that, for all � ∈ E+, we have

Tr(� log� − �) ≥ −C
(
Tr

√
H�

√
H

)1/2
. (3.7)

(ii) Let �k be a bounded sequence of E+ such that �k converges to � in J1, then �k log�k −
�k converges to � log� − � in J1.

(iii) The application � 
→ Tr(� log� − �) is strictly convex on E+.
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Proof Step 1: proof of the inequality (3.7). We shall use the following inequality, deduced
from Lemma A.1 which is proven in the Appendix: there exists C > 0 such that, for all
� ∈ E+, ∑

p≥1

p2λp[�] ≤ C Tr
√

H�
√

H, (3.8)

where we have denoted by (λp[�])p≥1 the nonincreasing sequence of nonzero eigenvalues
of � (this sequence is finite or infinite). The function s 
→ β(s) = s log s − s is negative on
[0, e] and positive increasing on [e,+∞). Let

C1 = sup
s∈[0,e]

|s log s − s|√
s

< +∞.

Let � ∈ E+ and denote by (λp[�])p>p0 the eigenvalues of � that belong to the interval (0, e].
We have

−Trβ(�) ≤
∑
p>p0

|β(λp[�])| ≤ C1

∑
p>p0

√
λp[�]

≤ C1

(∑
p>p0

p2λp[�]
)1/2(∑

p>p0

1

p2

)1/2

≤ C1√
p0

(
Tr

√
H�

√
H

)1/2
,

which proves (3.7).

Step 2: proof of (ii). Consider a sequence �k bounded in E+, such that �k → � in J1. Let
M = supk ‖�k‖L(L2) < +∞. There exists a constant CM > 0 such that

∀s ∈ [0,M], |s log s − s| ≤ CMs3/4.

Thus, for all ε > 0, denoting again β(s) = s log s − s, we get

∑
λp [�k ]≤ε

|β(λp[�k])| ≤ CM

∑
λp [�k ]≤ε

(λp[�k])3/4 ≤ CMε1/4
∑

λp [�k ]≤ε

(λp[�k])1/2

≤ CMε1/4

(∑
p≥1

p2λp[�k]
)1/2(∑

p≥1

1

p2

)1/2

≤ Cε1/4
(
Tr

√
H�k

√
H

)1/2 ≤ Cε1/4,

where C is independent of k and where we used (3.8). The same inequality holds for the
limit �. Let ε > 0 and let us decompose

β(s) = β1(s) + β2(s) = (β1s≤ε)(s) + (β1s>ε)(s).

For all ε, one has

Tr |β(�k) − β(�)| ≤ Tr |β1(�k)| + Tr |β1(�)| + Tr |β2(�k) − β2(�)|
≤ Cε1/4 + Tr |β2(�k) − β2(�)|,
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so that the result is proved if we show that β2(�k) converges to β2(�) strongly in J1. Ac-
cording to Theorem 3.2, it is enough to prove that β2(�k) converges weakly to β2(�) in J1

and that ‖β2(�k)‖J1 → ‖β2(�)‖J1 to obtain the strong convergence in J1. We prove first the
weak convergence. To this aim, we choose ε such that λp[�] 
= ε for all p ∈ N

∗ and denote

N = max{p : λp[�] > ε}.
According to Lemma A.2, we have

λp[�k] → λp[�], ∀p ≥ 1, (3.9)

and we can choose k large enough so that we have

λp[�k] > ε for all p ≤ N and λp[�k] < ε for all p > N.

Besides, following again Lemma A.2, we choose some eigenbasis (φk
p)p∈N∗ and (φp)p∈N∗

of �k and �, respectively, such that

∀p ∈ N
∗, lim

k→∞
‖φk

p − φp‖L2 = 0. (3.10)

Then, the actions of β2(�k) and β2(�) on any ϕ ∈ L2(0,1) read

β2(�k)ϕ =
N∑

p=1

β(λp[�k])(φk
p,ϕ)φk

p; β2(�)ϕ =
N∑

p=1

β(λp[�])(φp,ϕ)φp,

where (·, ·) denotes the L2(0,1) scalar product (taken linear with respect to its second vari-
able and anti-linear with respect to its first variable). Therefore, for any bounded operator B ,

Tr(β2(�k)B) =
N∑

p=1

β(λp[�k])(φk
p,Bφk

p) →
N∑

p=1

β(λp[�])(φp,Bφp) = Tr(β2(�)B),

thanks to (3.9), (3.10) and the continuity of the function β . This proves the weak conver-
gence of β2(�k) in J1. Regarding the convergence of the norm, we have directly

‖β2(�k)‖J1 =
N∑

p=1

|β(λp[�k])| →
N∑

p=1

|β(λp[�])| = ‖β2(�)‖J1 ,

and item (ii) is proved.

Step 3: proof of the strict convexity (iii). We recall first the Peierls inequality [32]: let (ui)i≥1

be an orthonormal basis of L2(0,1), whose scalar product is denoted by (·, ·); then, setting
β(s) = s log s − s, we have

∑
i≥1

β((ui, � ui)) ≤ Tr(β(�)). (3.11)

Indeed, denoting by (λi, φi)i≥1 the spectral elements of � ∈ E+, we have

(ui, β(�)ui) =
∑
j≥1

β(λj )|(φj , ui)|2.
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Since
∑

j≥1 |(φj , ui)|2 = 1, it follows from the Jensen inequality that

β((ui, � ui)) = β

(∑
j≥1

λj |(φj , ui)|2
)

≤
∑
j≥1

β(λj )|(φj , ui)|2.

Summing up the latter relation with respect to i and using the relation
∑

i≥1 |(φj , ui)|2 = 1,
the Peierls inequality (3.11) follows.

Consider now �1, �2 in E+ such that �1 
= �2. Let t ∈ (0,1) and denote by (μi,ψi)i∈N∗
the spectral elements of the operator t�1 + (1 − t)�2. Then

Tr(β(t�1 + (1 − t)�2)) =
∑
i≥1

β(μi) =
∑
i≥1

β((ψi, (t�1 + (1 − t)�2)ψi)).

There exists at least one index i0 such that (ψi0 , �1ψi0) 
= (ψi0 , �2ψi0). Indeed, if not, we
would have �1 = �2 since (ψi)i∈N∗ is an orthonormal basis of L2(0,1). Since β is strictly
convex, it thus comes,

∑
i≥1

β(t (ψi, �1 ψi) + (1 − t)(ψi, �2ψi)) <
∑
i≥1

[tβ((ψi, �1ψi)) + (1 − t)β((ψi, �2 ψi))].

Using the Peierls inequality (3.11) to control the right hand side, it comes finally

Tr(β(t�1 + (1 − t)�2)) < t Tr(β(�1)) + (1 − t)Tr(β(�2)),

which yields the strict convexity of the functional. �

4 Existence and Uniqueness of the Minimizer

In this section, we prove the first part of our main Theorem 2.1. More precisely, we prove
the following proposition.

Proposition 4.1 Consider a density n(x) such that n > 0 on [0,1] and n ∈ H1
per . Then the

minimization problem with constraint

minF(�) for � ∈ E+ such that n[�] = n, (4.1)

where F is defined by (2.5), is attained for a unique density operator �[n].

Proof We denote

A = {� ∈ E+ such that n[�] = n}.
Step 1: A is not empty. We start with a simple, but fundamental remark: thanks to our as-
sumption on the density n(x), the set A is not empty. Indeed, let φ1 := ‖n‖−1/2

L1

√
n and com-

plete φ1 to an orthonormal basis (φi)i≥1 of L2(0,1). The function n belongs to H1
per . Hence,

by Sobolev embedding in dimension one, n is continuous and, from n > 0, we deduce that

n(x) ≥ min
[0,1]

n > 0
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and then
√

n ∈ H1
per . For all ψ ∈ L2(0,1), consider the density operator ν defined by

νψ := √
n(

√
n,ψ), (4.2)

we find

Tr(
√

Hν
√

H) = ‖√H
√

ν‖2
J2

=
∑
i≥1

(
√

H
√

νφi,
√

H
√

νφi)

= (
√

H
√

n,
√

H
√

n) =
∫ 1

0

∣∣∣∣ d

dx

√
n

∣∣∣∣
2

dx < ∞,

Tr(�ν) =
∫ 1

0
n(x)�(x)dx ∀� ∈ L∞(0,1),

so, by the characterization (2.2), ν belongs to A.

Step 2: F is bounded from below on A. From (2.7), we deduce that, for all � ∈ A,

F(�) ≥
∫ 1

0
n(x) logn(x)dx +

(
log(4π)

2
− 1

)∫ 1

0
n(x)dx > −∞, (4.3)

since by Sobolev embedding n is bounded. Therefore, one can consider a minimizing se-
quence (�k)k∈N for (4.1), i.e. a sequence �k ∈ A such that

lim
k→+∞

F(�k) = inf
σ∈A

F(σ) > −∞.

Step 3: uniform bound in E . Let us prove that (�k)k∈N is a bounded sequence of E+. Since
�k ∈ A, we already have

‖�k‖J1 = Tr�k =
∫ 1

0
n(x)dx < +∞.

Moreover, since the density operator ν defined by (4.2) belongs to A, we have, for k large
enough,

Tr(�k log�k − �k) + Tr(
√

H�k

√
H) = F(�k) ≤ F(ν) + 1 < +∞.

Hence, using the inequality (3.7), we obtain

−C
(
Tr

√
H�k

√
H

)1/2 + Tr(
√

H�k

√
H) ≤ F(ν) + 1 < +∞,

thus

sup
k∈N

Tr(
√

H�k

√
H) < +∞.

Step 4: convergence to the minimizer. Since (�k)k∈N is a bounded sequence of E+, one can
apply Lemma 3.1 to deduce that, after extraction of a subsequence, we have

�k → � in J1 as k → +∞ (4.4)

and

Tr(
√

H�
√

H) ≤ lim inf
k→+∞

Tr(
√

H�k

√
H). (4.5)
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Next, by (4.4) and Lemma 3.3(ii), we get

Tr(�k log�k − �k) → Tr(� log� − �) as k → +∞,

which yields, with (4.5),

F(�) ≤ lim inf
k→+∞

F(�k) = inf
σ∈A

F(σ). (4.6)

Let � ∈ L∞(0,1) and denote also by � the bounded multiplication operator by �. Since �k

converges to � in J1, we have

∫ 1

0
�(x)n(x)dx = Tr(��k) → Tr(��) as k → +∞,

thus, from the characterization (2.2), we deduce that n[�] = n, which means that � ∈ A.
This enables finally to conclude from (4.6) that, in fact, we have the equality

F(�) = inf
σ∈A

F(σ) = min
σ∈A

F(σ).

The uniqueness of the minimizer is a consequence of the strict convexity of F , see Item (iii)
of Lemma 3.3. �

5 Characterization of the Minimizer

This section is devoted to the second part of our main Theorem 2.1, the characterization of
the minimizer. As we explained at the end of Sect. 2, we need to define a penalized version
of our minimization problem.

5.1 A Penalized Minimization Problem

Consider a density n(x) such that n > 0 on [0,1] and n ∈ H1
per . For all ε ∈ (0,1] we define

the penalized free energy functional, for all � ∈ E+:

Fε(�) = Tr(� log� − �) + Tr(
√

H�
√

H) + 1

2ε
‖n[�] − n‖2

L2 .

Proposition 5.1 Let ε ∈ (0,1) and let n ∈ H1
per such that n > 0 on [0,1]. The minimization

problem without constraint

min
�∈E+

Fε(�) (5.1)

where Fε is defined above, is attained for a unique density operator �ε[n], which has the
following characterization: we have

�ε[n] = exp(−(H + Aε)), (5.2)

where Aε ∈ H1
per .
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Proof Since the entropy functional Tr(� log�−�) is not differentiable on E+, we regularize
it. For all η ∈ [0,1] and s ∈ R+, we define the regularized entropy

βη(s) = (s + η) log(s + η) − s − η logη,

and the associated free energy functional, for all � ∈ E+:

Fε,η(�) = Tr(βη(�)) + Tr(
√

H�
√

H) + 1

2ε
‖n[�] − n‖2

L2 .

Notice that β ′
η(s) = log(s + η), βη(0) = 0, and that βη is strictly convex on R+ and holo-

morphic on (−η,∞) × R for the convenient branch.

Step 1: minimization of Fε,η . In this step, we prove that for all η ∈ [0,1], the problem

min
�∈E+

Fε,η(�) (5.3)

admits a unique minimizer �ε,η . Notice that for η = 0, this problem is nothing but (5.1): in
the statement of the proposition, we have denoted shortly �ε = �ε,0.

By (2.6) and a Sobolev embedding in dimension one, we have

‖n[�]‖L∞ ≤ C Tr� + C Tr(
√

H�
√

H),

so the functional Fη
ε is well-defined on E+ for all η ∈ [0,1] and ε ∈ (0,1]. We will need the

following technical lemma on the function βη .

Lemma 5.2 The application � 
→ βη(�) possesses the following properties.

(i) There exists a constant C > 0 such that, for all � ∈ E+ and for all η ∈ [0,1], we have

Trβη(�) ≥ −C
(
Tr

√
H�

√
H

)1/2
. (5.4)

(ii) Let �k be a bounded sequence of E+ such that �k converges to � in J1, then for all
η ∈ [0,1], βη(�k) converges to βη(�) in J1.

(iii) For all η ∈ [0,1], the application � 
→ Trβη(�) is strictly convex on E+.
(iv) Consider a sequence �η bounded in E+ such that �η → � in J1 as η → 0. Then

Trβη(�η) converges to Trβ0(�) as η → 0.

Proof of the lemma It is not difficult to adapt the proof of Lemma 3.3 in order to show
Items (i), (ii), (iii). We shall only prove Item (iv), proceeding similarly to Step 2 of
Lemma 3.3. We first notice that the function βη converges to β0 uniformly on all [0,M],
M > 0, and that one has

∀s ∈ [0,M], |βη(s)| ≤ CM

√
s,

with CM independent of η. Let M = supη ‖�η‖L(L2) < +∞. For all N ∈ N
∗, by using the

inequality (3.8), we get

∑
p≥N

|βη(λp[�η])| ≤ CM

∑
p≥N

√
λp[�η] ≤ CM√

N

(
Tr

√
H�η

√
H

)1/2 ≤ CM√
N

,
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where we used the fact that (�k) is a bounded sequence of E+ and where λp[�η] denotes the
p-th nonzero eigenvalue of �. Hence, decomposing

|Trβη(�η) − Trβ0(�)| ≤
∑
p<N

|βη(λp[�η]) − β0(λp[�])|

+
∑
p≥N

|βη(λp[�η])| +
∑
p≥N

|β0(λp[�])|,

one deduces from the uniform convergence of βη to β0 and from

|λp[�η] − λp[�]| ≤ ‖�η − �‖L(L2) ≤ ‖�η − �‖J1 , ∀p ≥ 1

(see the proof of Lemma A.2 in the Appendix) that

|Trβη(�η) − Trβ0(�)| → 0 as η → 0.

The proof of Lemma 5.2 is complete. �

Let us now study the minimization problem (5.3), for fixed η ∈ [0,1]. For all � ∈ E+, we
deduce from (5.4) that

Fε,η(�) ≥ −C
(
Tr

√
H�

√
H

)1/2 + Tr(
√

H�
√

H) + 1

4ε
‖n[�]‖2

L2 − 1

2ε
‖n‖2

L2 ,

where we used (a − b)2 ≥ 1
2a2 − b2. From this inequality, we deduce two facts. First, that

inf�∈E+ Fε,η(�) > −∞. Second, that any minimizing sequence �k is bounded in E+. Indeed,
we have

Fε,η(�k) ≤ Fε,η(0) = 1

2ε
‖n‖2

L2 ,

thus

−C
(
Tr

√
H�k

√
H

)1/2 + Tr(
√

H�k

√
H) + 1

4ε
sup

k

‖n[�k]‖2
L1

≤ sup
k

Fε,η(�k) + 1

2ε
‖n‖2

L2 ≤ 1

ε
‖n‖2

L2 .

This implies that, for all k,

Tr�k + Tr
√

H�k

√
H ≤ Cε (5.5)

where Cε is a positive constant independent of k and η. Hence, according to Lemma 3.1,
one can extract a subsequence still denoted �k such that the convergences

�k → � in J1, Tr(
√

H�
√

H) ≤ lim inf
k→+∞

Tr(
√

H�k

√
H) (5.6)

hold true as k → +∞. By Lemma 5.2(ii), we have

Trβη(�k) → Trβη(�). (5.7)
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Let us now prove that n[�k] converges to n[�] in L∞(0,1), which implies in particular
that

‖n[�k] − n‖2
L2 → ‖n[�] − n‖2

L2 . (5.8)

We have

‖√n[�k]‖2
H1 =

∫ 1

0
n[�k](x)dx +

∥∥∥∥ d

dx

√
n[�k]

∥∥∥∥
2

L2
≤ Tr�k + Tr

√
H�k

√
H < +∞,

where we used (2.6). Therefore, the sequence (
√

n[�k])k∈N is bounded in H1(0,1), and by
Sobolev embedding one can extract a subsequence such that

√
n[�k] converges to a function

f ∈ C 0([0,1]) in the L∞(0,1) topology. This implies that n[�k] converges to f 2 in L∞.
Moreover, for all � ∈ L∞(0,1), we know from (5.6) that

∫ 1

0
n[�k]�dx = Tr�k� → Tr�� =

∫ 1

0
n[�]�dx,

which means that n[�k] converges weakly to n[�] in L1(0,1). This enables to identify the
limit: we have in fact f 2 = n[�].

Finally, (5.6), (5.7) and (5.8) yield

Fε,η(�) ≤ lim infFε,η(�k) = inf
σ∈E+

Fε,η(σ ),

so � ∈ E+ is a minimizer of (5.3). Furthermore, one remarks that the application � 
→ n[�]
is linear, so the application

� 
→ ‖n[�k] − n‖2
L2

is convex, and it can be deduced from Lemma 5.2(iii) that Fη
ε is strictly convex: the min-

imizer �ε,η[n] is unique. In the sequel of this proof, n being fixed, we denote shortly �ε,η

instead of �ε,η[n]. Notice that, from (5.5), one gets an estimate independent of the parameter
η ∈ [0,1]: for all ε ∈ (0,1], one has

sup
η∈[0,1]

Tr�ε,η + sup
η∈[0,1]

Tr
√

H�ε,η

√
H < +∞. (5.9)

Step 2: differentiation of Fη
ε for η > 0. We will use the following lemma, whose proof is in

the Appendix.

Lemma 5.3 Let η ∈ (0,1]. Let � ∈ E+ and let ω be a trace-class self-adjoint operator. Then,
the Gâteaux derivative of the application

� 
→ F̃η(�) = Trβη(�)

at � in the direction ω is well-defined and we have

DF̃η(�)(ω) = Tr(β ′
η(�)ω).

Let h be a bounded Hermitian operator. For � ∈ E+, consider the operator � + t
√

�h
√

�.
Assume that t ∈ [−t0, t0], with 0 < t0‖h‖ ≤ 1. For such values of t and for all ϕ ∈ L2(0,1),
we have

(�ϕ,ϕ) + t (
√

�h
√

�ϕ,ϕ) = ‖√�ϕ‖2
L2(�)

+ t (h
√

�ϕ,
√

�ϕ),
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≥ ‖√�ϕ‖2
L2(�)

(1 − |t |‖h‖),
≥ 0.

Therefore � + t
√

�h
√

� is nonnegative, self-adjoint and belongs to E+ since

∣∣Tr(
√

H
√

�h
√

�
√

H)
∣∣ ≤ ‖h‖‖√H

√
�‖2

J2
= ‖h‖Tr(

√
H�

√
H) < ∞.

Moreover, we have the following estimates:

‖√�h‖2
J2

≤ ‖h‖2‖�‖J1 , ‖√H
√

�h‖2
J2

≤ ‖h‖2 Tr(
√

H�
√

H),

Tr(
√

�|h|√�) ≤ ‖h‖‖�‖J1 , Tr(
√

H
√

�|h|√�
√

H) ≤ ‖h‖Tr(
√

H�
√

H).

Therefore, by linearity, the following equality holds in W 1,1
per (0,1) ⊂ L∞(0,1) ⊂ L2(0,1):

n[� + t
√

�h
√

�] = n[�] + tn[√�h
√

�],

which yields, for all t 
= 0;

‖n[� + t
√

�h
√

�] − n‖2
L2 − ‖n[�] − n‖2

L2

2t
=

∫ 1

0
n[√�h

√
�](x)(n[�] − n)(x)dx + O(t).

(5.10)
From Lemma 5.3 and from (5.10), one deduces the following expression for the Gâteaux
derivative of Fε,η in the direction ω = √

�ε,η h
√

�ε,η:

lim
t→0

Fε,η(�ε,η + t
√

�ε,ηh
√

�ε,η) − Fε,η(�ε,η)

t

= Tr(β ′
η(�ε,η)

√
�ε,ηh

√
�ε,η) + Tr(

√
H

√
�ε,ηh

√
�ε,η

√
H) + Tr(Aε,η

√
�ε,ηh

√
�ε,η)

= Tr(
√

�ε,η(β
′
η(�ε,η) + H + Aε,η)

√
�ε,ηh), (5.11)

where we used the cyclicity of the trace and where we have denoted

Aε,η(x) = 1

ε
(n[�ε,η] − n)(x). (5.12)

Note that Aε,η denotes here, with an abuse of notation, either the L∞ function Aε,η , or the
operator of multiplication by Aε,η which is a bounded operator. Indeed, Aε,η belongs to
H1

per ⊂ L∞ since n ∈ H1
per according to the hypotheses and since �ε,η ∈ E+.

Now, we have the tools to conclude: since �ε,η is the minimizer of (5.3) and since �ε,η +
t
√

�ε,ηh
√

�ε,η belongs to E+ for t small enough, the Gâteaux derivative (5.11) vanishes and
for all h ∈ L(L2), self-adjoint, for all η ∈ (0,1], we have

Tr(
√

�ε,η(β
′
η(�ε,η) + H + Aε,η)

√
�ε,ηh) = 0. (5.13)

Step 3: convergence of �ε,η as η → 0. From the estimate (5.9) and from Lemma 3.1, one
deduces that there exists �̃ ∈ E+ (dependent of ε) such that, as η → 0+,

�ε,η → �̃ in J1 and Tr(
√

H�̃
√

H) ≤ lim inf
η→0+

Tr(
√

H�ε,η

√
H). (5.14)
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Then, from Lemma 5.2(iv), one deduces that

lim
η→0

βη(�ε,η) = β0(̃�). (5.15)

Moreover, one can deduce from (5.14) and from Sobolev embeddings in dimension one,
exactly as to prove (5.8), that

‖n[�η] − n‖2
L2 → ‖n[̃�] − n‖2

L2

as η → 0. Together with (5.14) and (5.15), this leads to

Fε,0(̃�) ≤ lim
η→0+

Fε,η(�ε,η). (5.16)

Moreover, by definition of �ε,0 and �ε,η as minimizers of Fε,0 and Fε,η , one has

Fε,0(�ε,0) ≤ Fε,0(̃�) and Fε,η(�ε,η) ≤ Fε,η(�ε,0).

Applying Lemma 5.2(iv), one gets

lim
η→0+

Fε,η(�ε,0) = Fε,0(�ε,0),

and finally all these limits are equal, since

Fε,0(�ε,0) ≤ Fε,0(̃�) ≤ lim
η→0+

Fε,η(�ε,η) ≤ lim
η→0+

Fε,η(�ε,0) = Fε,0(�ε,0).

Hence, by uniqueness of the minimizer, we have �̃ = �ε,0. Moreover, we deduce also from
Fε,0(�ε,0) = limη→0+ Fε,η(�ε,η) that

Tr(
√

H�ε,0

√
H) = lim

η→0+
Tr(

√
H�ε,η

√
H).

Hence, by applying the second part of Lemma 3.1 we get finally

�ε,η → �ε,0 in J1 and
√

H
√

�ε,η → √
H

√
�ε,0 in J2 as η → 0. (5.17)

Now we have the tools to pass to the limit in (5.13) as η → 0+. First, let us prove that,
for all bounded operator h,

lim
η→0

Tr(β ′
η(�ε,η)�ε,ηh) = Tr(β ′

0(�ε,0)�ε,0h). (5.18)

To this aim, we introduce a parameter κ > 0 and decompose

Tr(β ′
η(�ε,η)�ε,ηh) = Tr(1�ε,η≥κβ

′
η(�ε,η)�ε,ηh) + Tr(1�ε,η<κβ

′
η(�ε,η)�ε,ηh). (5.19)

Since β ′
η(s) = log(s + η), on all interval [κ,M] with 0 < κ < M , one has

lim
η→0

max
s∈[κ,M]

|β ′
η(s) − β ′

0(s)| = 0 and |sβ ′
η(s) − sβ ′

0(s)| ≤ Cs.

The first term in this decomposition (5.19) can thus be uniformly approximated, for M large
enough:

|Tr(1�ε,η≥κ β ′
η(�ε,η)�ε,ηh) − Tr(1�ε,0≥κβ

′
0(�ε,0)�ε,0h)|
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≤ ‖�ε,η‖J1‖h‖ max
s∈[κ,M]

|β ′
η(s) − β ′

0(s)| + Cκ‖�ε,η − �ε,0‖J1‖h‖,

and converges to 0 as η → 0 (for all fixed κ > 0). Consider now the second term in the
right-hand side of (5.19). We have a uniform bound s1/8β ′

η(s) ≤ R for s ∈ (0,M], so

Tr(1�ε,η<κβ
′
η(�ε,η)�ε,ηh) ≤ R‖h‖‖1�ε,η<κ(�ε,η)

7/8‖J1

≤ CR‖h‖κ1/8
∑
λp<κ

(λp)3/4

≤ CR‖h‖κ1/8

(∑
p≥1

1

p6

)1/4

,

where we used again the bound (3.8) for the eigenvalues λp of �ε,η , together with the esti-
mate (5.9). Hence

lim
κ→0

sup
η∈(0,1]

|Tr(1�ε,η<κβ
′
η(�ε,η)�ε,ηh)| = 0.

This ends the proof of (5.18).
Second, by (2.6) and by Sobolev embedding, we have

Aε,η(x) = 1

ε
(n[�ε,η] − n)(x) → Aε,0(x) := 1

ε
(n[�ε,0] − n)(x)

in the L∞(0,1) topology. Hence, the corresponding multiplication operators satisfy

Aε,η → Aε,0 in L(L2(0,1))

and the convergence of
√

�ε,η in J2 yields

lim
η→0

Tr(
√

�ε,ηAε,η

√
�ε,ηh) = Tr(

√
�ε,0Aε,0

√
�ε,0h). (5.20)

Third, the convergence of
√

H
√

�ε,η in J2 yields

lim
η→0

Tr
(√

�ε,η

√
H

√
H

√
�ε,ηh

) = Tr
(√

�ε,0

√
H

√
H

√
�ε,0h

)
. (5.21)

Finally, one can pass to the limit in (5.13) and (5.18), (5.20), (5.21) give, for all h ∈ L(L2)

self-adjoint,

Tr(
√

�ε(log(�ε) + H + Aε)
√

�εh) = 0,

where we have denoted �ε = �ε,0 and Aε = Aε,0. This means that

√
�ε(log(�ε) + H + Aε)

√
�ε = 0. (5.22)

Step 4: the kernel of �ε is {0}. In this step, we will prove that, for all ε ∈ (0,1], the kernel of
the minimizer �ε of Fε is {0}.

Let us prove this result by contradiction. Assume that the kernel of �ε is not {0} and pick
a basis function φ ∈ Ker�ε . We first complete φ into an orthonormal basis {φ, (ψp)p∈I } of
Ker�ε (I may be empty, finite or infinite). Then, we denote by (λp)1≤p≤N the nonincreasing
sequence of nonzero eigenvalues of �ε (here N is finite or not), associated to the orthonormal
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family of eigenfunctions (φp)1≤p≤N . We thus obtain a Hilbert basis {φ, (ψp)p∈I , (φp)1≤p≤N }
of L2(0,1). Since it is not clear whether φ belongs to H1

per , let us regularize it by setting

φα = (1 + α
√

H)−1φ,

where α > 0 is a small parameter. We have φα ∈ H1
per and, as in the proof of Lemma 3.1,

lim
α→0

φα → φ

in L2(0,1). We simply fix α > 0 such that |(φα,φ)| > 1/2. Denote by P α the orthogonal
projection

P αϕ := φα(φα,ϕ), ∀ϕ ∈ L2(0,1),

and consider the positive operator �(t) = �ε + tP α for t > 0. From φα ∈ H1
per , we deduce

that the operator P α belongs to E+. We shall prove that there exists t > 0 such that

Fε(�(t)) < Fε(�ε), (5.23)

which is a contradiction.
Let η > 0 and denote as before β(s) = s log s − s and βη(s) = (s + η) log(s + η) − s −

η logη. From the min-max principle and from the positivity of the operator P α , one deduces
that

∀p ∈ N
∗, λp(�(t)) ≥ λp(�ε),

where λp(·) denotes the p-th eigenvalue of the operator. Hence, we have

β(λp(�(t)) − β(λp(�ε)) =
∫ λp(�(t))

λp(�ε)

log(s)ds

≤
∫ λp(�(t))

λp(�ε)

log(s + η)ds

= βη(λp(�(t))) − βη(λp(�ε)),

which implies

Tr(β(�(t))) − Tr(β(�ε)) ≤ Tr(βη(�(t))) − Tr(βη(�ε))

and then

Fε(�(t)) − Fε(�ε) ≤ Fε,η(�(t)) − Fε,η(�ε).

Therefore, to prove (5.23), it suffices to find η > 0 and t > 0 such that

Fε,η(�(t)) < Fε,η(�ε). (5.24)

Since P α belongs to E+ and by Lemma 5.3, for all η > 0 one can differentiate Fε,η at �ε in
the direction P α and one has

lim
t→0

Fε,η(�(t)) − Fε,η(�ε)

t
= Tr(log(�ε + η)P α) + Tr(

√
HP α

√
H) + Tr(AεP

α).
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One has

Tr(log(�ε + η)P α) = |(φα,φ)|2 logη +
N∑

p=1

|(φα,φp)|2 log(λp + η)

+
∑
p∈I

|(φα,ψp)|2 logη,

hence, by using |(φα,φ)| > 1/2, one obtains for 0 < η < 1/2

Tr(log(�ε + η)P α) ≤ 1

4
logη +

p0∑
p=1

|(φα,φp)|2 log

(
λp + 1

2

)
,

where p0 has been chosen such that λp < 1/2 for p > p0. Therefore, there exists a constant
Cε,α independent of η (but depending on ε and α) such that

lim
t→0

Fε,η(�(t)) − Fε,η(�ε)

t
≤ 1

4
logη + Cε,α.

To conclude, it suffices to choose η small enough such that 1
4 logη +Cε,α < 0. Then one has

lim
t→0

Fε,η(�(t)) − Fε,η(�ε)

t
< 0,

and for t small enough one has (5.24), which leads to a contradiction. This ends the proof
of the claim.

Step 5: identification of �ε . Notice that, since Aε ∈ H1
per ⊂ L∞(0,1), the operator HA :=

H + Aε with domain D(H) is bounded from below and has a compact resolvent. Denote
by (λε

p,φε
p)p∈N∗ the eigenvalues and eigenfunctions of �ε . From the previous step, we know

that, for all p, we have λε
p > 0. Moreover, (φε

p)p∈N∗ is a Hilbert basis of L2(0,1). We will
prove in this step that (φε

p)p∈N∗ is a complete family of eigenfunctions of HA associated to
the eigenvalues − logλε

p .
Apply (5.22) to φε

p . Since from Step 4 we know that λε
p > 0, we obtain

√
�ε(log(λε

p) + H + Aε)φ
ε
p = 0.

Remark that, since
√

H
√

�ε is bounded (with adjoint operator
√

�ε

√
H ), we know that φε

p

belongs to H1
per . Taking the L2 scalar product of the above equation with φε

q leads to

0 = (
√

�ε(log(λε
p) + H + Aε)φ

ε
p,φε

q)

=
√

λε
q log(λε

p)δpq + (√
�ε

√
H

√
Hφε

p,φε
q

) + (
√

�εAεφ
ε
p,φε

q)

=
√

λε
q log(λε

p)δpq + (√
Hφε

p,
√

H
√

�εφ
ε
q

) + (Aεφ
ε
p,

√
�εφ

ε
q)

=
√

λε
q

(
log(λε

p)δpq + (√
Hφε

p,
√

Hφε
q

) + (Aεφ
ε
p,φε

q)
)
.

Hence, for all p,q ∈ N
∗,

(√
Hφε

p,
√

Hφε
q

) + (Aεφ
ε
p,φε

q) = − log(λε
p)δpq . (5.25)
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The family (φε
p)p∈N∗ is thus an orthogonal family for the following sesquilinear form asso-

ciated to HA:

QA(u, v) = (
√

Hu,
√

Hv) + (Aεu, v).

Note that, since Aε ∈ L∞, there exists two constants m,M > 0 such that

∀u ∈ H1
per,

1

M
‖u‖2

H1 ≤ QA(u,u) + m‖u‖2
L2 ≤ M‖u‖2

H1 . (5.26)

Let us now prove that this family (φε
p)p∈N∗ is dense in H1

per . Let φ ∈ H1
per . We already

know that the following series:

φN =
N∑

p=1

(φε
p,φ)φε

p

converges in L2(0,1) to φ as N → +∞. We will prove that in fact this series converges in
H1 which, by (5.26), is equivalent to saying that

QA(φ,φ) = lim
N→+∞

QA(φN,φN). (5.27)

Again, the key argument of the proof will be the fact that �ε is the minimizer of Fε : for all
t > 0, we have

0 ≤ Fε(�ε + tP ) − Fε(�ε) (5.28)

where P denotes the orthogonal projection on φ:

Pu := φ(φ,u), ∀u ∈ L2(0,1).

Indeed, φ ∈ H1
per implies that P ∈ E+, thus �̃(t) := �ε + tP belongs to E+ for all t > 0. Now,

as in the previous Step 4, one can prove that, for all η > 0, we have

0 ≤ Fε(�ε + tP ) − Fε(�ε) ≤ Fε,η(�ε + tP ) − Fε,η(�ε)

and

lim
t→0

Fε,η(�ε + tP ) − Fε,η(�ε)

t
= Tr(log(�ε + η)P ) + Tr(

√
HP

√
H) + Tr(AεP )

=
∑
p∈N∗

|(φ,φε
p)|2 log(λε

p + η) + QA(φ,φ).

Therefore, for all η > 0, one has

−
∑
p∈N∗

|(φ,φε
p)|2 log(λε

p + η) ≤ QA(φ,φ). (5.29)

Let N ∈ N
∗ large enough, such that log(λε

N) < 0. For η > 0 small enough, one has

∀p ≥ N, log(λε
p + η) ≤ 0,
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thus (5.29) yields

−
N∑

p=1

|(φ,φε
p)|2 log(λε

p + η) ≤ QA(φ,φ).

Since we know that λε
p > 0 for all p, one can pass to the limit in this inequality as η → 0:

−
N∑

p=1

|(φ,φε
p)|2 logλε

p ≤ QA(φ,φ).

Remarking that, by the orthogonality property (5.25), one has

QA(φN,φN) = −
N∑

p=1

|(φ,φε
p)|2 logλε

p,

this inequality reads

QA(φN,φN) ≤ QA(φ,φ). (5.30)

In particular, this means that (φN) is a bounded sequence of H1
per , thus converges weakly to

φ in H1 as N → +∞. From the equivalence of norms (5.26), we then deduce that

QA(φ,φ) ≤ lim inf
N→+∞

QA(φN,φN).

Together with (5.30), we get (5.27) and our claim is proved: φN converges to φ in the H1

strong topology and the family (φε
p)p∈N∗ is dense in H1

per .
This enables to conclude the proof. Indeed, this density property implies that (5.25) is

equivalent to

∀φ ∈ H1
per,

(√
Hφε

p,
√

Hφ
) + (Aεφ

ε
p,φ) = −(φε

p,φ) logλε
p. (5.31)

This means that (φε
p)p∈N∗ is a complete family of eigenfunctions of HA (still identified with

the associated quadratic form) and that the associated eigenvalues of HA are − logλε
p . In

other words, we have

�ε = exp(−HA)

in the sense of functional calculus. The proof of Proposition 5.1 is complete. �

5.2 Passing to the Limit

In this subsection, we terminate the proof of our main Theorem 2.1. Let n(x) such that n > 0
on [0,1] and

√
n ∈ H1

per . By a Sobolev embedding in dimension one,
√

n is continuous on
[0,1], so that we have

0 < m := min
x∈[0,1]

n(x). (5.32)

Propositions 4.1 and 5.1 define the unique minimizers �[n] and �ε[n]—shortly denoted
� and �ε here—of the minimization problems (4.1) and (5.1). Moreover, �ε takes the
form (5.2), with

Aε = 1

ε
(nε − n) ∈ H1

per,
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where we have denoted nε := n[�ε]. Let us study successively the limits of �ε , nε and Aε as
ε → 0.

Step 1: convergence of �ε . Recall that, for all σ ∈ E+, we have

Fε(σ ) = F(σ) + 1

2ε
‖n[σ ] − n‖2

L2

and that n[�] = n. Hence, by definition of �ε , we have

F(�ε) ≤ Fε(�ε) = Tr(�ε log�ε − �ε) + Tr
√

H�ε

√
H + 1

2ε
‖n[�ε] − n‖2

L2

≤ Fε(�) = F(�). (5.33)

Therefore, one deduces from the estimate (3.7) that Tr
√

H�ε

√
H is bounded independently

of ε and that n[�ε] converges to n in L2(0,1). In particular, by Cauchy-Schwarz, we obtain

|Tr�ε − Tr�| =
∣∣∣∣
∫ 1

0
(n[�ε] − n)(x)dx

∣∣∣∣ ≤ ‖n[�ε] − n‖L2 → 0 as ε → 0.

The family �ε is thus bounded in E+ independently of ε and then, by Lemma 3.1, there exists
�̃ ∈ E+ such that

�ε → �̃ in J1 and Tr(
√

H�̃
√

H) ≤ lim inf
ε→0

Tr(
√

H�ε

√
H). (5.34)

Therefore, by Lemma 3.3(ii), by the expression (2.5) of F and by (5.33), one gets

F (̃�) ≤ lim inf
ε→0

F(�ε) ≤ F(�). (5.35)

Furthermore, we have n[̃�] = n. Indeed, the strong J1 convergence of �ε implies the weak
J1 convergence, thus

∀ϕ ∈ L∞(0,1),

∫ 1

0
n[�ε](x)ϕ(x)dx = Tr(�εϕ) → Tr(̃�ϕ) =

∫ 1

0
n[̃�](x)ϕ(x)dx

and we already know that n[�ε] converges to n in L2(0,1), so

∀ϕ ∈ L∞(0,1),

∫ 1

0
n[̃�](x)ϕ(x)dx =

∫ 1

0
n(x)ϕ(x)dx

and then n[̃�] = n.
Finally, �̃ is a minimizer of (4.1) and the uniqueness of this minimizer proved in Propo-

sition 4.1 yields �̃ = �. Moreover, one has F(�ε) → F(�), so

lim
ε→0

Tr(
√

H�ε

√
H) = lim

ε→0
F(�ε) − lim

ε→0
Tr(�ε log�ε − �ε)

= F(�) − Tr(� log� − �) = Tr(
√

H�
√

H).

The second part of Lemma 3.1 can thus be applied and one has finally

�ε → � in J1 and
√

H
√

�ε → √
H

√
� in J2 as ε → 0. (5.36)
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Notice that, from Lemma 3.1, we also have

√
�ε → √

� in J2 as ε → 0. (5.37)

Step 2: convergence of nε := n[�ε]. In this step, we will prove that

lim
ε→0

‖nε − n‖H1 = 0. (5.38)

From the previous step, we know that �ε → � in J1. According to Lemma A.2, for the
sequel of the proof, let us choose some eigenbasis (φε

p)p∈N∗ and (φp)p∈N∗ , respectively of
�ε and � and such that

∀p ∈ N
∗, lim

ε→0
‖φε

p − φp‖L2 = 0. (5.39)

We claim that

∀p ∈ N
∗ lim

ε→0
‖√�εφ

ε
p − √

�φp‖L2 = 0, (5.40)

and lim
ε→0

‖√H
√

�εφ
ε
p − √

H
√

�φp‖L2 = 0. (5.41)

Indeed, to prove (5.40), it suffices to write

‖√�εφ
ε
p − √

�φp

∥∥
L2 ≤ ‖√�ε(φ

ε
p − φp)‖L2 + ‖(√�ε − √

�)φp‖L2

≤ ‖√�ε‖L(L2)‖φε
p − φp‖L2 + ‖√�ε − √

�‖L(L2)

≤ ‖√�ε‖J2‖φε
p − φp‖L2 + ‖√�ε − √

�‖J2

then to use (5.37) and (5.39). To prove (5.41), one writes similarly

∥∥√
H

√
�εφ

ε
p − √

H
√

�φp

∥∥
L2 ≤ ‖√H

√
�ε‖J2‖φε

p − φp‖L2 + ∥∥√
H

√
�ε − √

H
√

�
∥∥

J2

then use (5.36) and (5.39).
Let us prove (5.38). We already have nε → n in L2(0,1), so it remains to prove the

convergence of dnε

dx
in L2. One has

nε =
∑
p∈N∗

λε
p|φε

p|2, n =
∑
p∈N∗

λp|φp|2,

thus
∣∣∣∣dnε

dx
− dn

dx

∣∣∣∣ ≤ 2
∑
p∈N∗

∣∣∣∣
√

λε
p

d

dx
φε

p − √
λp

d

dx
φp

∣∣∣∣
∣∣∣√λε

pφε
p

∣∣∣

+ 2
∑
p∈N∗

∣∣∣∣√λp

d

dx
φp

∣∣∣∣
∣∣∣√λε

pφε
p − √

λpφp

∣∣∣ .

Therefore, from (2.1) and Cauchy-Schwarz, one gets

∥∥∥∥dnε

dx
− dn

dx

∥∥∥∥
L2

≤ sε
1 + sε

2
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with

sε
1 =

∑
p∈N∗

∥∥(
√

H
√

�ε)φ
ε
p − (

√
H

√
�)φp

∥∥
L2‖√�εφ

ε
p‖L∞ , (5.42)

sε
2 =

∑
p∈N∗

∥∥(
√

H
√

�)φp

∥∥
L2‖√�εφ

ε
p − √

�φp‖L∞ . (5.43)

Let us use again (3.8). From the Gagliardo-Nirenberg inequality, one deduces that, for all
N ∈ N

∗,

∑
p≥N

λε
p‖φε

p‖2
L∞ ≤

∑
p≥N

√
λε

p‖φε
p‖L2‖

√
λε

p

√
Hφε

p‖L2

≤
(∑

p≥N

λε
p

)1/2(
Tr

√
H�ε

√
H

)1/2

≤ C‖�ε‖1/4
L(L2)

(∑
p≥N

p2λε
p

)1/4(∑
p≥N

1

p2

)1/4(
Tr

√
H�ε

√
H

)1/2

≤ C

N1/4
(Tr�ε)

1/4
(
Tr

√
H�ε

√
H

)3/4 ≤ C

N1/4
,

and similarly

∑
p≥N

λp‖φp‖2
L∞ ≤ C

N1/4
.

Thus, for all N ∈ N
∗

|sε
1 |2 ≤ 2

(∑
p∈N∗

λε
p‖φε

p‖2
L∞

)(∑
p<N

‖√H
√

ρεφ
ε
p − √

H
√

ρφp‖2
L2

)

+ C

N1/4

∑
p≥N

(‖√H
√

ρεφ
ε
p‖2

L2 + ‖√H
√

ρφp‖2
L2

)

≤ C
∑
p<N

‖√H
√

ρεφ
ε
p − √

H
√

ρφp‖2
L2 + C

N1/4

and from (5.41) one deduces that

lim
ε→0

|sε
1 |2 = 0. (5.44)

Furthermore,

|sε
2 |2 ≤

(∑
p∈N∗

‖√H
√

�φp‖2
L2

)(∑
p<N

‖√ρεφ
ε
p − √

ρφp‖2
L∞

)

+
(∑

p∈N∗
‖√H

√
�φp‖2

L2

)(∑
p≥N

(‖√ρεφ
ε
p‖2

L∞ + ‖√ρφp‖2
L∞)

)
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≤ C

(∑
p∈N∗

‖√H
√

�φp‖2
L2

)(∑
p<N

‖√ρεφ
ε
p − √

ρφp‖2
L2

)1/2

×
(∑

p<N

‖√H
√

ρεφ
ε
p − √

H
√

ρφp‖2
L2

)1/2

+ C

N1/4

∑
p∈N∗

‖√H
√

�φp‖2
L2

where we used again the Gagliardo-Nirenberg inequality. Hence, from (5.41), one deduces
that

lim
ε→0

|sε
2 |2 = 0. (5.45)

The convergence (5.38) of nε is proved.

Step 3: convergence of Aε . By a Sobolev embedding in dimension one, H1
per is a Banach

algebra: for all u,v ∈ H1
per the product uv also belongs to H1

per . Hence, from (5.31), one gets

∀p ∈ N
∗, ∀φ ∈ H1

per,
(√

Hφε
p,

√
H(φε

pφ)
) +

∫ 1

0
Aε|φε

p|2φdx = −(φε
p,φε

pφ) logλε
p.

Multiply this identity by λε
p and sum up on p. Since nε = ∑

p λε
p|φε

p|2, we obtain that, for
all φ ∈ H1

per ,

∫ 1

0
Aεnεφdx = −

∑
p∈N∗

(φε
p,φ(�ε log�ε)φ

ε
p) −

∑
p∈N∗

(√
H

√
�εφ

ε
p,

√
H(φ

√
�εφ

ε
p)

)

= −Tr(φ(�ε log�ε)) −
∑
p∈N∗

(√
H

√
�εφ

ε
p,

√
H(φ

√
�εφ

ε
p)

)
. (5.46)

Let us examinate separately the convergence of the two terms in the right hand-side.
From (5.36), Lemma 3.3(ii), and from

|Tr(φ(�ε log�ε)) − Tr(φ(� log�))| ≤ ‖φ‖L∞‖�ε log�ε − � log�‖J1

one has

lim
ε→0

sup
‖φ‖H1 ≤1

|Tr(φ(�ε log�ε)) − Tr(φ(� log�))| = 0. (5.47)

Let us now prove that

√
Hφ

√
�ε → √

Hφ
√

� in J2 as ε → 0, (5.48)

where φ denotes the operator of multiplication by φ. Using the identification (2.1), one gets

‖√Hφ(
√

�ε − √
�)‖2

J2

=
∑

p

‖√Hφ(
√

�ε − √
�)φp‖2

L2

=
∑

p

∥∥∥∥ d

dx
(φ(

√
�ε − √

�)φp)

∥∥∥∥
2

L2
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≤ 2

∥∥∥∥dφ

dx

∥∥∥∥
2

L2

∑
p

‖(√�ε − √
�)φp‖2

L∞ + 2‖φ‖2
L∞

∑
p

∥∥∥∥ d

dx
((

√
�ε − √

�)φp)

∥∥∥∥
2

L2

≤ C

∥∥∥∥dφ

dx

∥∥∥∥
2

L2

∑
p

‖(√�ε − √
�)φp‖L2

∥∥√
H(

√
�ε − √

�)φp

∥∥
L2

+ C‖φ‖2
H1

∑
p

∥∥√
H((

√
�ε − √

�)φp)
∥∥2

L2

≤ C‖φ‖2
H1

(‖√�ε − √
�‖2

J2
+ ‖√H

√
�ε − √

H
√

�‖2
J2

)

where we used a Gagliardo-Nirenberg inequality. Hence, from (5.36) and (5.37), one de-
duces (5.48). Finally, from (5.36) and (5.48), one gets the following convergence, as ε → 0:

∑
p∈N∗

(√
H

√
�εφ

ε
p,

√
H(φ

√
�εφ

ε
p)

) = (√
H

√
�ε,

√
Hφ

√
�ε

)
J2

→ (√
H

√
�,

√
Hφ

√
�
)

J2

=
∑
p∈N∗

(√
H

√
�φp,

√
H(φ

√
�φp)

)
. (5.49)

Let us now define a linear form on H1
per . For ψ ∈ H1

per , we set

(A,ψ)H−1
per,H1

per
= Tr

(
ψ

n
(� log�)

)
+

∑
p∈N∗

(
(
√

H
√

�)φp,
√

H

(
ψ

n

√
�φp

))
. (5.50)

From the above estimates, one deduces that

∣∣(A,ψ)H−1
per,H1

per

∣∣ ≤ C

∥∥∥∥ψ

n

∥∥∥∥
H1

(|Tr� log�| + Tr� + Tr
√

H�
√

H
)
. (5.51)

Since n(x) ≥ m > 0 on [0,1], the application ψ 
→ ψ

n
is continuous on H1

per , so the above
defined linear form A is continuous on H1

per and belongs to its dual space H−1
per . Moreover,

we have proved by (5.46), (5.47) and (5.49) that, for all φ ∈ H1
per ,

lim
ε→0

sup
‖φ‖H1 ≤1

∣∣∣∣
∫ 1

0
Aεnεφdx − (A,nφ)H−1

per,H1
per

∣∣∣∣ = 0.

To conclude, it remains to use the convergence (5.38) of nε to n in H1, which implies that
1
nε

converges to 1
n

and that, in fact,

lim
ε→0

sup
‖ψ‖H1 ≤1

∣∣∣∣
∫ 1

0
Aεψdx − (A,ψ)H−1

per,H1
per

∣∣∣∣ = 0.

In other words, one has

Aε → A in the H−1
per strong topology as ε → 0. (5.52)
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Step 4: identification of � and conclusion. Let us define the following forms on H1
per ,

QAε(ϕ,ψ) = (
√

Hϕ,
√

Hψ) + (Aεϕ,ψ),

QA(ϕ,ψ) = (
√

Hϕ,
√

Hψ) + (A,ϕψ)H−1
per,H1

per
.

The form (A,ϕψ)H−1
per,H1

per
is a symmetric, form-bounded perturbation of (

√
Hϕ,

√
Hψ)

with relative bound < 1. Indeed, by (5.51) and by 1
n

∈ H1
per ,

(A, |ϕ|2)H−1
per,H1

per
≤ C‖|ϕ|2‖H1 ≤ C‖ϕ‖2

L4 + C‖ϕ‖L∞

∥∥∥∥dϕ

dx

∥∥∥∥
L2

≤ C‖ϕ‖L2

∥∥∥∥dϕ

dx

∥∥∥∥
L2

+ C‖ϕ‖1/2
L2

∥∥∥∥dϕ

dx

∥∥∥∥
3/2

L2

≤ 1

2
(
√

Hϕ,
√

Hϕ) + C‖ϕ‖2
L2 ,

where used the Young inequality and a standard Gagliardo-Nirenberg inequality. Let HA

be the unique self-adjoint operator associated to QA. Then, according to Theorem XIII.68
of [30] HA has a compact resolvent and we denote by (μp)p∈N∗ its eigenvalues. In addition,
we have

|QAε(ϕ,ϕ) − QA(ϕ,ϕ)| ≤ C‖Aε − A‖H−1
per

‖|ϕ|2‖H1 ,

≤ C‖Aε − A‖H−1
per

(
(
√

Hϕ,
√

Hϕ) + ‖ϕ‖2
L2

)
.

Moreover, Theorem 3.6 of [24], Chap. VI, Sect. 3.2 yields the convergence of operators in
the generalized sense, which implies in particular the convergence of the eigenvalues:

− logλε
p = με

p → μp ∀p ∈ N
∗

as ε → 0. Hence, by continuity of the exponential function,

λε
p = exp(−με

p) → exp(−μp) ∀p ∈ N
∗.

Besides, according to Lemma A.2 in the Appendix, the J1 convergence of �ε to � implies
the convergence of the eigenvalues:

λε
p → λp ∀p ∈ N

∗.

This enables to completely identify the eigenvalues of �: we have

λp = exp(−μp).

Furthermore, from (5.41) and from λp > 0, one deduces that φε
p → φp in H1. One can thus

pass to the limit in (5.31): for all p ∈ N
∗ and for all φ ∈ H1

per ,

με
p(φε

p,φ) = QAε(φ
ε
p,φ) → QA(φp,φ),

which yields

QA(φp,φ) = μp(φp,φ), ∀φ ∈ H1
per,
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so, finally, (φp)p∈N∗ is the complete basis of eigenvalues of QA. We have completely iden-
tified �:

� = exp(−(H + A)).

The proof of our main Theorem 2.1 is complete.
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Appendix

Lemma A.1 Let � ∈ E+ and denote by (ρp)p≥1 the nonincreasing sequence of nonzero
eigenvalues of �, associated to the orthonormal family of eigenfunctions (φp)p≥1. Denote
by (λp[H ])p≥1 the nondecreasing sequence of eigenvalues of the Hamiltonian H . Then we
have

Tr(
√

Hρ
√

H) =
∑
p≥1

ρp(
√

Hφp,
√

Hφp) ≥
∑
p≥1

ρpλp[H ].

Proof Notice first that

Tr(
√

Hρ
√

H) = Tr(
√

H
√

ρ(
√

H
√

ρ)∗) =
∑
p≥1

(
√

H
√

ρφp,
√

H
√

ρφp),

=
∑
p≥1

ρp(
√

Hφp,
√

Hφp).

Then,

N∑
p=1

ρp(
√

Hφp,
√

Hφp) = ρN

N∑
p=1

(
√

Hφp,
√

Hφp) + (ρN−1 − ρN)

N−1∑
i=1

(
√

Hφp,
√

Hφp)

+· · · (ρ2 − ρ3)

2∑
p=1

(
√

Hφp,
√

Hφp) + ρ1(
√

Hφ1,
√

Hφ1).

Using [27], Theorem 12.1 page 300, it comes

N∑
p=1

(
√

Hφp,
√

Hφp) ≥
N∑

p=1

λp[H ],

so that, since ρp ≤ ρp−1, ∀p ≥ 1,

N∑
p=1

ρp(
√

Hφp,
√

Hφp) ≥ ρN

N∑
p=1

λp[H ] + (ρN−1 − ρN)

N−1∑
p=1

λp[H ]

+ · · · (ρ2 − ρ3)

2∑
p=1

λp[H ] + ρ1λ1[H ],
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=
N∑

p=1

ρp λp[H ].

We conclude by passing to the limit as N → +∞. Notice that the theorem of [27] is written
for Hamiltonians defined on R

d , but it can be easily extended to bounded domains. This
ends the proof of the lemma. �

Lemma A.2 Let a sequence �k converging to � in J1 as k → +∞. Then the corresponding
nonincreasing sequence of eigenvalues (λk

p)p∈N∗ , (λp)p∈N∗ converge as follows:

∀p ∈ N
∗, lim

k→+∞
λk

p → λp.

Moreover, there exist a sequence of orthonormal eigenbasis (φk
p)p∈N∗ of �k and an ortho-

normal eigenbasis (φp)p∈N∗ of � such that

∀p ∈ N
∗, lim

k→+∞
‖φk

p − φp‖L2 = 0.

Proof Let us first prove the convergence of the eigenvalues. According to [32], Theo-
rem 1.20, we have the following relation between the eigenvalues of �k and �:

λk
p − λp =

∞∑
q=1

αpqλq[�k − �], p ≥ 1,

where (λq[�k −�])q≥1 denote the eigenvalues of �k −� and α is a doubly stochastic matrix,
that is a matrix with positive entries such that

∑∞
p=1 αpq = ∑∞

q=1 αpq = 1. The minmax
principle [30] implies |λq [�k − �]| ≤ ‖�k − �‖L(L2), ∀q ≥ 1, so that

|λk
p − λp| ≤ ‖�k − �‖L(L2) ≤ ‖�k − �‖J1 , p ≥ 1,

which gives the desired convergence property.
Let us now prove the convergence of eigenfunctions by following [24] and [2]. Let σ(�)

be the spectrum of � and consider an eigenvalue λp of ρ with multiplicity mp . Let dp be the
distance between λp and the closest different eigenvalue,

dp = min
μ∈σ(�),μ 
=λp

|λp − μ|,

and denote by � the circle of radius dp

2 centered at λp . Assume k is large enough so that

‖�k − �‖L(L2) <
dp

2
. (A.1)

Then according to [24], Theorem IV.3.18, (see also Example 3.20), there are exactly mp

(repeated) eigenvalues of �k included in � and denote by φk
p,l , l = 1, . . . ,mp the associated

eigenfunctions. If (φp,l)l=1,...,mp denote the eigenfunctions associated to λp , we construct an
operator Uk

p such that

φk
p,l = Uk

pφp,l, 1 ≤ l ≤ mp, and Uk
p → I in L(L2) as k → ∞.
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To do so, let Pp[�] be the projection operator onto the spectral components of � inside �,

Pp[�] = 1

2iπ

∫
�

(zI − �)−1dz.

According to [24], II.4.2, Remark 4.4, if

‖Pp[�] − Pp[�k]‖L(L2) < 1, (A.2)

then an expression of Uk
p can be given by

Uk
p = (I − (Pp[�k] − Pp[�])2)− 1

2 (Pp[�k]Pp[�] + (I − Pp[�k])(I − Pp[�])). (A.3)

Let us verify first that (A.2) holds for k large enough. We have

Pp[�] − Pp[�k] = 1

2iπ

∫
�

((zI − �)−1 − (zI − �k)
−1)dz,

= 1

2iπ

∫
�

(zI − �)−1(� − �k)(zI − �k)
−1dz.

From the definition of dp , we have

sup
z∈�

‖(zI − �)−1‖L(L2) = 2

dp

. (A.4)

Moreover, owing (A.1) and noticing that

(zI − �k)
−1 = (I + (zI − �)−1(� − �k))

−1(zI − �)−1

and

∥∥(I + (zI − �)−1(� − �k))
−1

∥∥
L(L2)

≤ (
1 − ‖(zI − �)−1(�k − �)‖L(L2)

)−1
,

≤
(

1 − 2

dp

‖�k − �‖L(L2)

)−1

,

we conclude that

sup
z∈�

‖(zI − �k)
−1‖L(L2) ≤ 1

dp

2 − ‖�k − �‖L(L2)

. (A.5)

Therefore, (A.4) and (A.5) imply the inequality

‖Pp[�] − Pp[�k]‖L(L2) ≤ ‖�k − �‖L(L2)

dp

2 − ‖�k − �‖L(L2)

.

Assuming k is large enough so that ‖�k − �‖L(L2) <
dp

4 , the above inequality yields the
desired result since

‖Pp[�] − Pp[�k]‖L(L2) ≤ 4

dp

‖�k − �‖L(L2) < 1. (A.6)
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Let us prove now that Uk
p → I in L(L2) as k → ∞. First, remarking that Pp[�] = Pp[�]2

and Pp[�k] = Pp[�k]2 since both are projections, (A.3) can be recast as

Uk
p = (I − (Pp[�k] − Pp[�])2)− 1

2 (I + Pp[�k](Pp[�] − Pp[�k]) + (Pp[�k] − Pp[�])Pp[�]).

Let δ := ‖Pp[�] − Pp[�k]‖L(L2) < 1. Then

∥∥∥∥(
I − (Pp[�k] − Pp[�])2

)− 1
2

∥∥∥∥
L(L2)

≤ (1 − δ2)− 1
2 ,

and, together with (A.6),

∥∥Uk
p − I

∥∥
L(L2)

≤ (1 − δ2)− 1
2
(‖Pp[�k](Pp[�] − Pp[�k])

∥∥
L(L2)

+ ‖(Pp[�k] − Pp[�])Pp[�]‖L(L2) + ‖(Pp[�k] − Pp[�])2‖L(L2)

)
,

≤ (1 − δ2)− 1
2 (2δ + δ2),

≤ Cp‖�k − �‖L(L2),

where the constant Cp does not depend on k for k large enough. It thus follows that

‖φk
p,l − φp,l‖L2 ≤ Cp‖�k − �‖L(L2) → 0 as k → ∞.

This ends the proof of the lemma. �

Proof of Lemma 5.3 Let � be an oriented curve in (−η,+∞) × R that contains the interval
(− η

2 ,2‖�‖). Let t ∈ [−t0, t0], with 2t0‖ω‖ < min(η,‖�‖). For such values of t , the spectrum
of � + tω is included in the interval (− η

2 ,2‖�‖).
Since βη is holomorphic in (−η,∞) × R, one can define βη(� + tω) and βη(�) by

βη(�) = 1

2iπ

∫
�

βη(z)(zI − �)−1dz,

βη(� + tω) = 1

2iπ

∫
�

βη(z)(zI − � − tω)−1dz.

Let |t | ∈ [0,min(t0, t1)], where

t1 dist(�,σ (�))−1 ‖ω‖ < 1,

σ (�) denoting the spectrum of �. We have

(zI − � − tω)−1 − (zI − �)−1 = (zI − �)−1(I − tω(zI − �)−1)−1 − (zI − �)−1

= (zI − �)−1
∑
k∈N∗

(tω(zI − �)−1)k

where the latter serie is normally converging in J1. Indeed, first,

‖(tω(zI − �)−1)k‖J1 ≤ |t |k‖ω(zI − �)−1‖k
J1

,
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so that we only need to estimate ω(zI − �)−1 in J1. Now, since � is self-adjoint,

‖(zI − �)−1‖ = dist(z, σ (�))−1 ≤ dist(�,σ (�))−1,

and it comes

|t |‖ω(zI − �)−1‖J1 ≤ |t |‖(zI − �)−1‖‖ω‖J1 ,

≤ |t |dist(�,σ (�))−1‖ω‖J1 ,

< 1, ∀|t | ≤ t1.

We thus can write

t−1
(
(zI − � − tω)−1 − (zI − �)−1

) = (zI − �)−1ω(zI − �)−1 + tA(t, z),

where the operator A(t, z) is uniformly bounded in J1 with respect to t and z for |t | ∈
[0,min(t0, t1)] and z ∈ �. Hence,

t−1[Trβη(� + tω) − Trβη(�)] = 1

2iπ
Tr

∫
�

βη(z)(zI − �)−1ω(zI − �)−1dz

+ t

2iπ
Tr

∫
�

βη(z)A(t, z) dz.

The two expressions of the right-hand side are well-defined and we have

∣∣∣∣Tr
∫

�

βη(z)(zI − �)−1ω(zI − �)−1dz

∣∣∣∣ ≤
∫

�

|βη(z)|‖(zI − �)−1ω(zI − �)−1‖J1dz,

≤ dist(�,σ (�))−2‖ω‖
∫

�

|βη(z)|dz,

∣∣∣∣Tr
∫

�

βη(z)A(t, z) dz

∣∣∣∣ ≤ sup
z∈�

‖A(t, z)‖J1

∫
�

|βη(z)|dz ≤ C1,

where C1 is independent of t ∈ [0,min(t0, t1)]. Hence

lim
t→0+ t−1[Trβη(� + tω) − Trβη(�)] = 1

2iπ
Tr

∫
�

βη(z)(zI − �)−1ω(zI − �)−1dz,

= 1

2iπ

∑
i∈N∗

(φi,ωφi)

∫
�

βη(z)(z − ρi)
−2dz,

where (ρi, φi)i∈N denote the spectral elements of �. Standard complex analysis then implies
that

1

2iπ

∫
�

βη(z)(z − ρi)
−2dz = β ′

η(ρi).

We therefore get the following expression of the Gâteaux derivative:

DF̃η(�)(ω) =
∑
i∈N∗

β ′
η(ρi)(φi,ωφi). (A.7)
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The serie is absolutely converging since β ′
η(s) = log(s +η) is locally bounded on R+ (recall

that η > 0):

|β ′
η(ρi)(φi,ωφi)| ≤ C|(φi,ωφi)|,

and since we have assumed that ω ∈ J1. Finally, to identify the derivative, it suffices to
notice that

∑
i∈N∗

β ′
η(ρi)(φi,ωφi) =

∑
i∈N∗

(φi,ωβ ′
η(�)φi) = Tr(ωβ ′

η(�)) = Tr(β ′
η(�)ω).

The proof of Lemma 5.3 is complete. �
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